
More on Subclasses

Subclasses represent hierarchical information. A
subclass inherits all of the properties -- the instance
variables and the methods -- of its parent class.

Because of this inheritance, we usually start
creating a subclass instance by running the parent
class constructor. That way, if we change
something about the parent class, the change is
automatically passed down to the subclass.

But that makes a problem: how do we call the
parent class constructor?

Suppose we have a parent class defined:

class Person:
def __init__(self, name):

self.name = name
self.age = 0
.......

and we want to construct a subclass:

class Student(Person):
def __init__(self, name):

How does class call class Person's constructor? Only
one of these makes sense:

A) def __init__(self, name):
__init__(self, name)

B) def __init__(self, name):
self.__init__(name)

C) def __init__(self, name):
Person.__init__(name)

D) def __init__(self, name)
Person.__init__(self, name)

In general, when you are inside a subclass and you
want to call one of the parent class's methods that
has been overridden in the subclass, you can do
that with

<parent class name>.<method name>(self, args)

For example,

Person.__str__(self)

This is getting a bit weird, but if you have an
object x of a subclass and you want to call one of
its parent class's methods that has been
overridden in the subclass, you can to it with

super(<subclass name>, x).<method name>(args)

as in

super(Student, x).Print()

And if that isn't weird enough, Python allows
multiple inheritance: a subclass can have multiple
parent classes. This means we can define a class C
as

class C(A, B)

which means that C inherits all of the instance
variables and methods of both class A and class B.

There are rules for what happens if class C is a
subclass of both class A and class B, both of which
happen to have methods with the same name
that do different things. The best rule is

DON'T USE MULTIPLE INHERITANCE

Multiple inheritance is a nice idea gone bad. If
you ever get into a situation where it seems like a
good idea, go get some sleep and then redesign
your code so you don't need to inherit from more
than one class.

